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A variational-vector calculus approach is employed to derive a recursive formulation
for dynamic analysis of flexible multibody systems. Kinematic relationships for adjacent
flexible bodies are derived in a companion paper [7], using a state vector notation that
represents translational and rotational components simultaneously. Cartesian generalized
coordinates are assigned for all body and joint reference frames, to explicitly formulate
deformation kinematics under small deformation assumptions. Relative coordinate kinematics
for joints are decoupled from deformation kinematics and an efficient flexible dynamics
recursive algorithm is developed. Dynamic analysis of a closed loop robot is performed to
illustrate efficiency of the algorithm.

1. Introduction
A recursive dynamics formulation was proposed by Armstrong [1] to analyze a robot

manipulator, beginning with Cartesian equations of motion in a joint reference frame.
Reaction forces were introduced as unknown forces into the equations of motion. These
unknown forces were then eliminated to obtain recursion formulas for calculation of reduced

equations of motion. The method was reformulated by Featherstone [2] and used to analyze a
robot arm that consists of revolute and/or translational joints. He used a spatial notation to
relieve notational complexity and introduced a new "articulated inertia" terminology that
reflects inertia effects of all outboard bodies in a kinematic chain. Neither method considered

the effect of flexibility of components.
Variational approaches have dominated structural analysis for the last decade. The

variational method has recently been combined with vector calculus, to permit systematical
transformation of the equations of motion from Cartesian space to joint coordinate space [3].
The same variational approach was used to derive a recursive formulation for constrained
rigid body mechanical system dynamics in Ref. 4.

A variational equation of motion for constrained flexible systems was derived in Ref. 5,
using Cartesian coordinates. The variational approach was applied to extend the rigid body
recursive formulation to flexible body systems by Kim [6]. Kinematic relationships between
reference frames for a pair of bodies that are connected by a joint are expressed in terms of
joint relative coordinates and modal deformation coordinates of bodies. As a result, joint and
modal coordinate equations of motion are coupled and must be solved simultaneously. This
requires inversion of a moderately large matrix, for coupled modal and joint coordinates.

In order to enhance graph theoretic analysis of deformation characteristics, kinematics
of flexible multibody systems is represented in a companion paper [7]. Based on this
kinematic analysis, a recursive formulation for dynamic analysis is represented in this paper
that decouples relative joint and deformation coordinates, to improve computational efficiency.
The proposed formulation can be used with a rigid body formulation by eliminating terms
related to modal coordinates, due to its decoupled treatment of gross motion and deformation.
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State vector representations and kinematics of flexible multibody systems, defined in
Refs. 8 and 7 respectively, are summarized in Section 2. The equation of motion for a flexible
body is transformed from the Cartesian space to a state space setting in Section 3. System
topology is defined in Section 4 and recursive equations of motion for a single closed loop
subsystem are derived in Section 5. Cut joint constraint acceleration equations that are needed
in the equations of motion are derived in Section 6. The base body equation of motion is defined
in Section 7. Numerical examples and results are presented in Section 8.

2. Decoupled Recursive Relationships for Flexible Bodies
To derive the variational equations of motion, state vector notation and decoupled

recursive relationships for adjacent reference frames [7, 8] are briefly reviewed here. A
matrix representation of the Cartesian velocity of a reference frame with origin at point P, as

shown in Fig. 1, is given as Yp = [_.TroT]T, where r_ is the velocity of point P and _0pis the

angular velocity of the x'p-y'p-Zp body reference frame. A generalized velocity state vector _'p,
based on screw and motor algebra [8, 9], is defined here as

mp ] L%]

where the 6x6 nonsingular matrix Tp is defined as

(2.1)

T°:['0""l
(2.2)

The tilde operator is used here to define a skew symmetric matrix as

i0rzrolI:- r x 0 x

-ry rx

that is associated with a vector r = [rx,ry,rz]T.

The Cartesian virtual displacement 5Zp is defined as

(2.3)

8Zp =-ISrPl

LS_pJ (2 ..4).

where 8rp is virtual displacement of point P and 8_p is virtual rotation of the x p-yp-Zp frame.

The state variation can be obtained by replacing "rpand o)pby 8rp and 5r,.p, respectively, in Eq.

2.1 ; i.e.,

_p =[Srp + rpSxpl = TpSZp
6_p ]

The acceleration state vector Yp
Eq. 2.1; i.e.,

(2.5)

is defined as the time derivative of velocity state _'p of

@p (2.6)
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whereXpis the 6xl vector

(2.7)
The inverse relationships between Cartesian and state vector quantities can be derived from
Eqs. 2.1,2.5, and 2.6 as

where

YP = "FPP1Yp ( 2.8 )

OZp = "Fp187'p (2.9)

';'p= rp19p- xp (2. Io )
the 6x6 inverse matrix Tp1 of the matrix Tp is simply

(2.11)
Three flexible bodies, with their body and jolnt reference frames, ape shown in Fig. 2.

The x-y-z frame is the global reference frame, denoted as F. Two joint reference frames are

attached to a body i at each joint definition point P_j. The Xij-Y ij-Z ij frame, denoted as F_j, is
fixed to body i and is parallel to the xl-y'i-z I frame, denoted as F'i, in the undeformed state. The

x,,- z,frame, eno,eda. bo y.xe has.xe orien,ation,reJativeto,.eF;;
frame, since both are fixed to the body at the same joint definition point where the body is
assumed to be very stiff.

Recursive relationships between reference frames in a joint, for example, between the
Xij-Yii" Zij and xji-Yii-Zji frames of joint (i,j), are

'_ji = Yij + _ij¢lij

87'ji =SZij + ]-[ij_qij

Yji = Yij + ]"[ij(_ij + _ij

(2.12)

(2.13)

(2.14)

where _', _', and 8_' are state representations of velocity, acceleration, and virtual

displacement, respectively, and qij is a vector of joint relative coordinates [7].
Recursive relationships between inboard and outboard joint reference frames of a

flexible body are

_'ij = _'i/+ rijai

8Zij = _Zil + rij_a i

:

Yij = Yi/+ Fijai + _'ij

(2:15)

(2_1 6)

(2.1 7)
where a is the deformation rnodal coordinate vector of the flexible body [5-7].

The recursive relationships between frames F_Iand F'_of a flexible body are
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YIJ = _'i + Aija i ( 2.1 8 )

87'ij = 8Zi + Aijai (2.1 9)

• •

Yij = Yi + Aijai + _'ij (2.20)

Detailed expressions for matrices ]"_j,&_j,H_j, O_j,A)i, and E_i may be found in Ref. 7.

3. Equation of Motion for a Flexible Body
The variational Cartesian equations of motion for a flexible rnultibody system are

derived in Ref. 5. They can be written for a typical body i, using the notations defined in
Section 2, as

[SZ T 8aT]{ Mi [_"i] + Si + Vi - Qi} =0
ai (3.1)

which must hold for all kinematically admissible 5Z_ and 5a=. The mass matrix M= is a

function of the generalized coordinates, S_ is a collection of quadratic velocity terms, Vi is the

elastic generalized force, and Q_ is the applied generalized force.
The equations of motion in Cartesian space are transformed to state vector form by

substituting kinematic relationships between the spaces. The state variation and acceleration
relationships of Eqs. 2.9 and 2.10 are substituted into Eq. 3.1, to yield

iii (3.2)

where the state representation I_1_of the mass matrix is partitioned into 4 submatrices, based
on state and modal coordinates,

[ 1I,; :]' ]_li = I_1mm M_ a _ -1 Mi -1 0

LM ' Mt'J (3.3)
Similarly, the state representation of 6_, which accounts for generalized force and coupling

terms, is divided into two subvectors as

(_= _ 1 0 Mi i -Si-Vi+Oi

I (3.4)

The equations of motion in Eq. 3.2 can be rewritten, using the notations of Eqs. 3.3 and 3.4, as

8_T(Mmm_, + i_l_,a_,_ QZ) + _aT(l_;_m_i + I_laa_i,_ (_a) = 0 (3.5)

where 87'_and 8a_ must be consistent with all constraints that act on body i.

4. System Topology
An extended flexible multibody graph model, in which nodes represent reference

frames and edges represent transformations between frames, is presented in Ref. 7. The
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corresponding graph for a single closed loop system is shown in Fig. 3. Body I is the junction

body, at which chains 1 and 2 of the spanning tree of Fig. 4 meet. If joint J(n,n+l) between
bodies n and n+l is cut, both bodies n and n+l are treated as tree end bodies.

5. Equations of Motion of a Single Closed Loop

The variational equation of motion for the system shown in Fig. 3 is

m

,T_.,-,-rnm:-m,..{_'i (Mi Yi + Mi ai- Mi ai

i=/ (5.1)

which must hold for all kinematically admissible virtual displacements that satisfy joint and
deformation constraints in Fig. 3. - -:

State variation and accelerations of each body reference frame are expressed in

corresponding joint terms and modal coordinates from Eqs. 2.19 and 2.20 and substituted into
Eq. 5.1. The resulting equations of motion are as follows:

m

"T mm" .. aa..{q_'i(i-1)(Mi Yi(i-1) + Mmaai Q_) T am" Qa)}- + _3ai(Mi Yi(i-1) + Mi ai -
i=/

= EQM(1) + EQM(2) = 0 ( 5.2 )

which must hold for all kinemalically admissible virtual displacements. Terms arising in Eq.
5.2 are as follows:

mm - mm
M i -- M i

ma - rna - mm
M i = M i - Mi Ai(i_l)

T

am MmaMi = i

= ^Taa Mi Ai(i_l ) + i(i_l)(M i Ai(i-1) _

-z - mm
qz= Qi + Mi _i(i-1) :

-a " am= T -z mm_ ::
(_= Oi + Mi '-'i(i-1)- Ai(i-1)(_" + Mi _i(i-1) )

I'1'

EQM(1 ) = _ "T mm ;" rna .. z T ma ;" aa.- a{SZi(i-1)(Mi Yi(i_l)+Mi ai-(_ )+ cSai (M i Yi(i_l)+Mi ai-(_ )}

i=l

(5.3)

(5.4)

m

EQM(2) )+Mi
aa-. a

ai-Q_ )}T. ^T rnm: ma.. z T :rna;"= .-.., {(SZi(i-1)(Mi Yi(i-1)+Mi ai-Q; )+ 5ai (Mi Yi(i-1

i=n+l ( 5.5 )

The Jacobian matrix of the cut joint constraint function (_J(n,n+l) is obtained by
differentiation as

_(_)J(n,n+l) = (_)_n(n+l)(__.n(rH.1) + (_)_(n+l)n(_,(n+l)r I = O

(5.6)
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where state variations 8Zn(n+l)and 8_'(n+l}n are obtained by employing the state vector
representation of Cartesian virtual displacements. There exists a Lagrange multiplier vector
such that

n

- T mm ;" ma-.,{SZi(i_l)(Mi Yi(i_l)+Mi ai-- _)EQM(2) +

i=l

T a m ;" aa.. a ^:.T =T ,, n(n+l)

+ 6a i (M i Yi(i_l)+Mi ai- _ )} + bZ.n(n+l)q_ (n.1)/_, = 0 (5.7)

where the virtual displacements need only be consistent with kinematic admissibility
conditions for all tree structure joints and deformation constraints. Similarly, the equation of
motion for chain 2 is

m

EQM(2) - _"_. _ T mm ;" ma.. z{_-i(i_l)(Mi Yi(i_l)+Mi ai-_ )

_'H-1

T am" aa.. a ,_-_T _T I n(n+l)

+ qSai (Mi Yi(i-1)+Mi ai-Qi )} + v"(n+l)n'Z(n*l)n '' ( 5.8 )

The virtual displacement 8Z.(n,1) may be expressed in terms of 8Z.(n_l) and 8a n from

Eq. 2.16. Substituting this relationship into Eq. 5.7, to obtain
n-1

EQM(2) + _-'_. - T mm ;" ma-. z T am" aa.. a{$Zi(i_l)(Mi Yi(i_l)+Mi ai--Q_)+ 6ai (M i Yi(i_l)+Mi ai-Q _)}

i=l

^_..T ,..rnm_, , .ma ._. ,._.+_]" _n(rH-1),
+ bLn(n_l)(,Mn lrn(n_l)+Mn an- _ Zn(n+l) ;

T,, am, _. ..aa.. ,.,T ,.='t" ,in(n+1),

+ Oant.M n Irn(n_l)+M n an+tn(n+t)_,_n(n.t)/_ ; = 0 (5.9)
which must hold for all virtual displacements that are consistent with tree structure joints
and deformation constraints in Fig. 4. Since San is arbitrary, the coefficient of 8a T in Eq. 5.9

must be zero. As a result, the following expression for an is obtained:

= Z ;" CT
_in Rn(n_l)Yn(n_l) + Ra(n_l) + Rn(n_.l)),

where
-1

z aa am
Rn(n_l)=-M n M n

-1

(5.1 o)

aa

T
c imaa-_rT d_T

Rn(n-1) = -'"n "n(n+l)"-Zr,(n+l ) (5.1 1 )

Note that superscript n(n+l) for the Lagrange multiplier vector has been dropped, for
notational convenience.

Substituting the modal acceleration of body n from Eq. 5.10 into Eq. 5.9,
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where

ii--1

T ,_._,T ,Mmm, _, . ma-. -z, T am" aa.. aEQM(2) + rtO i(i-1) t i lri(i-1)+Mi ai-_ )+ 8ai (Mi Yi(i-1)+Mi ai--_ )}

i=/

"T ....z .. ,._ _;, cT
+ ,. __ =0

mm Mmal:iZ
G_(n-1) =mn + "" n "n(n-1)

ill

G_(n_l ) = QZ _ i_mal:::la"'" n ' "n(n--1)

(5.1 2)

T T
Mmagc

Gr_(n-1) = _T + '"n "n(n-1)
Z"("+l) ( 5.1 3 )

and Eqs. 5.9 and 5.12 have the same kinematic admissibility conditions.

The variational equations of motion can be reduced further by substituting 87'n(r,_+) and

;, ^ = ..

Yn(n--1) in terms of 8Z(n_+) n, 5q(n.1)n, Y(n--1)n' and Cl(n-1)n, employing Eqs. 2.13 and 2.14. Equation

5.12 thus becomes

n-1 .........

EQM(2) + _ _,T mm : ma.. z T am : aa.. a{8 (M Y +M a )+<Sa (M Y +M a )}, i(i-1) i i(i-1) i i-Oi i i i(i-1) i i--Qi

i=l

"T " ..
+ _Z 0.__1)n{G_(n_l)Y(n._l)n-_(n_ 1)]](n_l)nq(n_l )n

T
q c

-_(n-1)e(n-1)n-Gn(n-1)+Gn(n-1)_'}

T T = ..
+ 15q(n_ 1)n]'_l)n{(_(n_l)Y(n_l)n-+_(n_l)]](n_.l)nOKn_l)n

T
q C

-_(n_l)e(n_l)n-G_m._l)+P_(n+l)Z} = 0 (5.1 4)

which must hold for all virtual displacements that satisfy constraints inboard of body n-1.

Since the kinematic relationship for joint (n-l,n) has been substituted into the equations of

motion, 8q(n.1) n is arbitrary; i.e., the coefficient of 8q(n_l) n in Eq. 5.14 must be zero, which

gives

z " T
Cl(n-1)n = R(n-1)nY(n--1)n + R_n-1)n + R_n-1)n ;L (5.1 5)

Rfn__l)n .T -1 T= ---(]"_n._l)nG_(n_l)]'](n_l)n) ]"_n_l)n_--_n_l)

R?n_.l)n T -1 :r q= -(]"_n._l)n_(n_.l )]'_n_ 1)n) ]'_n_l)n(_(n_l)l_n(n_t)-_n_l ))

CT ,T -1 ,T CT
R (n-1)n =-(]'_n-1 )nG_(n-1)["l(n-1)n)_(j-t-1)nC_n-1)

(5.16)

where

T z -1
where existence of (]"[(n_.l)nG_l(n_l)]-[(n_l)n) is proved in Ref. 11. Note that the subscripts of R z,

R a, and R c in Eq. 5.i 6 are in ascending order which are different from Eq. 5.11.

Substituting the relative joint acceleration of Eq. 5.15 into Eq. 5.14,
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where

n-1

'_ "T mm" ma-. z T am ;" +Maa-. a
EQM(2)+,_,{SZi(i_I)(M i Yi(i-1)+Mi ai-Qi )+ _ai (Mi Yi(i-1) i ai-Qi )}

i=l

_T _" q cT
+ =0 (5.17)

_n-1)n = GZ(n-1) + G_(n-1)[](n-1)nl_l)n

_n-1)n = qGn(n_l)- GZ(n_l)OO,__l)n - G_( n_l)]-[(n._l)nRa(n_l)n
T T T

G(L1)n = Gl_(n-'l) + G_n(n-1)[](n-1)ng(_-l)n (5.18)

which must hold for all virtual displacements that satisfy the same kinematic admissibility

conditions as Eq. 5.14. Note that the subscripts of Gz, Gq, and Gc in Eq. 5.18 are in ascending
order which are different from Eq. 5. 13.

By employing the recursive relationships between inboard and outboard joint frames
of Eqs. 2.16 and 2.17, the variational equations of motion can be reduced to

n-2

'_"_. "T mm" am.. z T am ;" " aa.. aEQM(2) + {_-i(i_l)(Mi Yi(i-1)+Mi ai-Qi )+ 8a i (M i Yi(i_l)+Mi ai-(_ )}

i=l

^T :" ..
+ _Z (n_l)(n_2){_(n_l)n(Y(n_l)(n_2)+r(n...1)nan_ l+_l(n..1)n )

T

q c mm" rna..
--G_n_ 1)n+_n_l)n)d -M n-1 Y(n-1)O'_-2)+M_lan-1-(_n.-1}

T T ;" .-
+ _an_ 1[]'in_l)n{_n_l)n(Y(n_l)(n_2)+]"(n_l)nan_l +_n-1)n )

T

q c am" .. a
-G_n_l)n+_n_l)n_,}+Mn_lY(n_l)(n_2)+M_n_lan_l-Q__l ] = 0 ( 5.1 9 )

which must hold for all virtual displacements that are consistent with tree structure
must be arbitrary, the coefficient ofconstraints inboard of joint (n-2,n-1). Since 8an_1

8a T must be zero, which yields
n-1

z " J
 n-1 =

where

where

(5.20)

z aa T -1 T am
R(n_l)(n_2)= -(M n-1+r(n-1)n_Zn-1)nr(n--1)n) (r(n--1)n_n-1)n+Mn-1)

R_n_l)(n_2) =-(M_.l+r?n_l)n_Zn_l)nr(n_l)n )-1 {rT_l)n(G(Z-1)r_(n-1)n+Gq.n-1)n)--Q_l}

R_nT_,)(n_2) = -(Mn aa_,+rL1)n_n_,)nr(._ 1).) -l(r[_,)"_)_
(5.21)

aa T r -1existence of (Mn_l+r(n_l)nG_n_l)n (n_l)n) is proved in Ref. 11.

Substituting the modal acceleration of body n-1 from Eq. 5.20 into Eq. 5.19,
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where

n-2

EQM(2) '_'_ "T mm ;" am-- z T am : aa.. a
+ _ {_-i(i-1)(Mi Yi(i-1)+Mi ai-Qi )+ _i (Mi Yi(i-1)+Mi a,-Q_ )}

• T
_T ...,,z _ _, ,.." q c

+ 6Z(n_+Xn_2)t_,,.._1)(n_2)Ycn_+Xn_2r_+Xr+_2)-.H.++iXn_2)_,..,,,- -- = 0 (5.22)

G_n-1)(n-2) z mm ma z= G(n-1)n+a_l +(G_n-1 )r'_(n-1 )n+a_l ) R(n-1)(n-2)

G(:ln-1)(n-2) = q z aG(n-1)n'_l-(G(n--1)nr(n-1)n+an-1)g(n-lXn-2)
T T T

G_cn_l)(n_2) c rnaG_l)n.l.(_Zn._l)rt[.,(n_l) n+M_ 1 c= )R(n-lXn-2) ( 5.2 3 )
If the reduction procedure is continued to the junction body /for chains 1 and 2, the

following reduced variational equation of motions is obtained:

-T " z ""
' aZ/(/-1){(G_/+l)+GZ/m)YK/_1)+(G_.1)rj(/+1)+Gjmrtn)af4G_/+1)_a+1)+d_ A_)

T T •
q q c c mm* ma..

-(G/(/+I)+G/m)+(G_+I)+G;n)+M / Y/(/-1)+MI a/-Q_/}

T T T z : T T z ""
+ aa I {(r/(/+l)G_/+l)+F/mGkn)Y/(/_l)+(F/(/+l)G'_/+l)r/(/+l)+r_G/m]-'/m)al

T T z T q T q T cT
+(]"'/Ol.vl)_/+l)_/(/+l)+r_G_n&kn)-(r._/+l)G/(h- 1)+r_G_)+(r/(_,l)G_/- 1)

T •
T c am" aa" a

r_G_._)_.+M/ Y/(/_I)+M/ a/Q/} = 0 (5.24)

Since 8a I is arbitrary, the modal acceleration of junction body I can be determined as

"" z _' T

a/= R/(/+I)Y/(/_I) + R_(/._I)+ R_(/_I)_, (5.25)
where

z aa T T z -1 am T T z
R/(/-1) = -(M / +]"/(/+1)G_K/+1)]"/(/+1)+r/raG/mr/m) (M / +r/(/+l)G_/(/+l)+r/mG#n)

a aa T T z -1 T q
R_/_I) = ,(M/+r/(/+1)_/+1)r/(/+1)+r_G#nr#n) [r/(_I){G_/+I)A/(/+I)+G/(/+I))

T z q a
A_+G_m)-QI ] .................

T T T
c am T T z -1 T c T c

R j(/-1) = -(M / +r/(/+l)_/+l)]"/(/+l)+I"lmG_rkn) (]"_,.1)G_l)+r_Gkn) (5.2 6 )

Substituting the modal acceleration of the junction body from Eq. 5.25 into Eq. 5.24,

z " "G/(/-1)YI(/-t) - G_/_I) + G_/_1)_.) = 0 (5.2 7)

which must hold for all kinematic constraints acting on junction body I. Terms arising in Eq.
5.27 are as follows:

G_/-1)= z z mm z ma z(G_I)+G_)+M/ -KG'_Kk.l_/(k.1)+G_rkn+M/ )RK/-1)

G_/-1) = z z rna a)R/u..1)
T T T T

G/_/-1) c ¢ z z ma c(G/(_.l)_Gxj,1)r_,l)+G_r_m+M / )R#j._I) (5.28)



6. Cut Joint Constraint Acceleration Equations
In additionto the equationsof motion,cut joint constraints must be used to obtain the

same number of equations as unknown accelerations and multipliers. Cut joint constraints
may be differentiated twice to obtain the constraint acceleration equation,

(n,n+l) T :" T _"
= _Zn(n+l)Yn(n+l) + _Z(n.l)nY(n+l)n - y= 0 (6.1)

where 1' is the collection of all terms that do not include Yn(n+l)and Y(n+l)n" Superscript

(n,n+l), which has been used to denote the cut constraint between bodies n and n+l, is

omitted for notational convenience in the derivation. Accelerations Yn(n+l)and Ycn+l)nfrom Eq.

2.17 are substituted into Eq. 6.1, to yield

[: _ ,°

Z_)(Y_l)+rn(n+l)an+An(n+l))

_Z(, 1)n(Y(n+l)(n+2)+F(n+l)(n+?._lr_l+]-,(n+l)(n+2))T _ _f= 0 ( 6.2 )+

Substituting an from Eq. 5.10 and _+1, obtained by advancing subscripts in Eq. 5.10, into Eq.

6.2 yields

where

G_(n-1)nYn(n-1)+ c : T TG_1)(_2)Y(_1)(_2) + (L_1)+L_1)(_2))_

- Nn(_l ) - N(_l)(n+2 ) - y= 0 (6.3)

T
T T c

Ln(n_l) = (_Z_n.1)Fn(n+l)Rr_(n_l)
T

Nn(n-1) = -_Zn(n+l)(An(n+l)+['n(n+l)R_(n-1)) ( 6.4 )

and L(n+l)(n+2) and N(n÷l)(n÷2) are obtained by substituting appropriate subscripts into Eq. 6.4.
The recursive relationship between triple primed frarne_ Of joints (n-l,n) and

(n+2,n+l), obtained from Eq. 2.16, are next substituted into Eq. 6.3, to give

Gn(n-1 )(Y(n-1 )n+[1_-1 )nq(n-1 )n+_(n-1 )n)+_ 1)(n+2)(Y(n+2)(n+l )+]'](n+2)(r_l )q(n+2)(n+l)

T T N
+O(n+2)(n+l))+(_(n_l)+L(n+lXn+2))),,-Nn(n_l)- (n+l)(n+2)-'y= 0 ( 6.5 )

If the relative joint accelerations _n--1)nfrom Eq. 5.15 and _,n+2.)(n+l),obtained by replacing

subscripts of Eq. 5.15, are substituted into Eq. 6.5,

" T T
G(n_l)nY(n_l)n+G(m.?J(n+l)Y(n+_(n+l)+(L_l)n+L_.2)(n+l))_-N(n_l)n-N(n+2)(n+l)= 0 ( 6.6 )

where
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C a

N(n_l)n = Nn(n_l) + Gn(n._l)(O(n._l)n+]"l(n_l)nR(n._l)n)
TT

Lcn-1)n = Lr_(ml)+ Gn(n'-1)]"[(n'-1)nl:_1)n (6.7)

and L(n+2)(n÷l) and N(n.2)(n+l} are obtained by replacing (n-l,n) by (n+2,n+l) in Eq. 6,7.
If this sequence of elimination of modal and relative joint accelerations is repeated to

junction body I, the following reduced constraint acceleration equations are obtained as

G_(_-I)Y_(/-1)+ LT/-1)_L- N_(__I)- ',/= 0

where
(6.8)

TT T T c
L/(/_I) = (LK/+_)+LIm)+ (G/_/+I)I"/(/+I)+G/m]"/m)R_/_I)

N/(/-1) = (N/(/*I)+N/m) - (GJc/+I)I"/(/+I)+G_nI"/m)R_/-1)- (GK/+I)_(/+I)+G/m_) ( 6.9 )

7. Base Body Equation of Motion
A single closed loop subsystem is used to derive decoupled recursive equations of

motion in Sections Sand 6. The var[ationaTequ_n_ofm6t_0_n _-were...... _-_reduced....to the..........inboard _
joint reference frame of the junction body. Since the base body does not have an inboard joint,
the inboard joinl reference frame of the base body |._:_ssumed to coincide with- the base body
reference frame. If the reduction procedures that have been carried out with this subsystem
are repeated along all chains of a system to the base body, the base body equation of motion is
obtained as

• T

(7.1)

where _'b is arbitrary for a floating base body, which yields

• T

(7.2)
Reduction of cut joint constraint acceleration equations to the base body yields the

reduced constraint acceleration equations as

T"
C" T

Gl_bYb+Lbb_,-Nbb= 0
(7.3)

Equation 7.2 may be combined with Eq. 7.3, to form the augmented base body equations of
motion,

Io+++++i__[,+I1
C_b LT_ _J (7.4)

In the case of a constrained base body, a Lagrange multiplier vector _b and
corresponding constraint accelerations are introduced into Eq. 7.4. The resulting augmented
equation of motion is

_2
z_



T
C_ Lu_ 0

[°_ O O
t,bJ

(7.5)
where _b is constraint equations acting on the base body and IF' is the collection of all terms

that do not include Yb in

Equation 7.4 or 7.5 is solved for the base body state acceleration vector and the
Lagrange multiplier vector. Detailed computational algorithm is presented in Ref. 11,

8. Example Problem
A closed loop spatial robot that consists of two flexible and three rigid bodies is shown

in Fig. 5. Bodies 3 and 5 are flexible beams with rectangular cross sections. All other bodies
are treated as rigid bodies. Body 1 is connected with ground, which is designated as the base
body, by a revolute joint. A lumped mass is attached to body 3 at point P to represent a
payload for this robot. Joints 1, 2, 3, 4, and 5 are revolute joints. The connection between
bodies 3 and 5 is a spherical join t (joint 6).

One generalized coordinate is assigned for each revolute joint, and three deformation
modes have been chosen for each flexible. Joint 6 is defined as the cut joint to form a tree
structure.

Inertial properties and geometric data are given in Table 1. For deformation mode
computation, flexible beams are discretized in to 10 equal length 3 diemensional beam
elements.

Simulation is carded out for 0.5 sec., with the following actuator torques applied at
joints 1, 2, and 4, respectively:

n+ = 5.0E9.sin(0.2nt)

n2 = 9.0E7 - 8.0E7.t

n4 = 8.5E9 - 3.0E9.t (8.1)

Results of the simulation have been verified using the three dimensional dynamic analysis
program DADS [18], which employes a Cartesian coordinate formulation [13]. In the
Cartesian coordinate formulation, 48 generalized coordinates and 40 constraint equations are
needed to represent the system. However, only 11 generalized coordinates and 3 constraint
equations are required for the recursive formulation presented here. The y coordinate,
velocity, and acceleration of the origin of the body reference frame for body 3 are shown in
Fig. 6. Both lhe DADS and recursive formulations yield the same results when implemented on
a VAX 11/780 serial computer, which cannot exploit parallelism in the recursive algorithm.
Table 2 shows the CPU time required for both methods and the ratio of CPU time between the
two methods.
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Table 2. CPU Comparison

CPU

DADS

8450 sec.

Recursive Method

762 sec.

Ratio

11.09

Table 2. CPU Comparison

512

z:


